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MULTIPLICITY OF THE MODES OF CELL DEATH

- Typical modes of cell death

* Apoptosis

* Autophagy

* Cornification

* Necrosis/Necroptosis

-Atypical modes of cell death

* Mitotic catastrophe

* Anoikis

* Excitotoxicity

* Wallerian degeneration
* Paraptosis

* Pyroptosis

* Pyronecrosis

* Entosis

Kroemer G et al. Cell Death Differ 2009, 16: 3-11.
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CLASSIFICATION OF CELL DEATH

Physiological and pathological cell death have been classified according
to morphological criteria into at least three categories:

*type | cell death : apoptosis
*type Il cell death : autophagy
*type lll cell death : necrosis

Boya G & Kroemer G et al. Oncogene 2008, 27: 6434-6451.
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PHAGOCYTOSIS
BY MACROPHAGES
QR NEARBY CELLS |

Two pathways of cell death leading to necrosis and apoptosis. At the top is shown a normal cell.
1A: Swelling. 1B: Vacuolization, blebbing, and increased permeability. 1C: Necrotic changes. ie,

coagulation, shrinkage, and karyolysis. 2A: Shrinkage and pyknosis. 2B: Budding and karyorhexis.
2C: Necrotic changes, ie, breakup into a cluster of apoptotic bodies.

Majno G & Joris | Am J Pathol 1995, 146: 3 - 15.
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Cell Death (initial concept)

Apoptosis N(_ecrosis
apoptotic morphology necrotic morphology

|

Active programmed cell death

Caspase-dependent cell death )
Passive unprogrammed cell death

» Mitochondrial pathway
(Associated or not with reticulum stress) Classical /Canonical Necrosis

» Death receptor pathway Cell Death Independent of Caspases

Kitanaka C & Kuchino Y Cell Death Differ 1999, 6: 508-515. Gérard Lizard,
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Current Opinion in Structural Biology

Grutter MG. Caspases: key players in programmed cell death. Curr Opin Struct Biol. 2000 Dec;10(6):649-55.
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Gérard Lizard,
Chowdhury I, Tharakan B, Bhat GK. Caspases - an update. Comp Biochem Physiol B Biochem Mol Biol. 2008 ;151(1):10-27.
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Caspases am synibesired 25 proangymes, with 2 M-srminal peptide o prodomain (PAD). 2nd beo subunits sometimes sepacated by a Bnkar peptide (back box). Based on caspass-1 and caspase
3, acliee enzymes are betemielamerns of two e { ~ 20 kDa; p20) and wo small [ - 10 kDa; pl0} subunits. The proeszymes me cleved af specific Asp residues (Din, whess 7is fe position
in e prokin). The sumbers & te right-hand side are e sumiers of aming acids s the prokin. *Bact cleavage sie ol known; Bthe Cleawage sim of caspase-3 may be at Asp2 or Asp-28
[65—67]; “caspasa-9 is claved pefmentially &t Azp-350 by caspase-3 and at Asp-315 by granzyme B [82). Caspase-2 clhavage sies e based on equavalent sites beisg presest in Medd? [50,61].
FADD represents the domans o caspase- and caspase-10 thal e homologous 1o e DED of FADDYMIORTY.

Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326 ( Pt 1):1-16.
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Caspasas-3, -7 aad -9 have ony pee cleavage sie betwees the faege and small subusits,
whereas the other caspases Rave two polenta’ asm@rae clevage =ies, resulting in removal
of 3 b=kar segion. Degrees of inhibision Dy cowpox wral serepn Crmb: + + +, poient
insibios; 4, very weak inlibigon: 7, sol known,

Cleavage =ipls) beswean  CimA

Caspasa Cther amas Actve sile  lrge and 5=al subusits  mhidition
Caspama-1  KE ACRG  WHD | 5; FEDO | A ++ +
Caspame-2  Maddz, ICH ACRG D000 | G; EESD | A +
Caspase-3  CP¥3Z Yama apopaim  OAGRL  IETD |3 +
Caspasa-d  ICEJI, TX, ICH-2 ACRG  WHVD | 5; LEED | A ++ +
Caspasa-5  ICEI, TV ACRG  WRVD |5 LEAD | 5 7
Caspama-6  Mch2 ACRG  DWD N, TEVD | A +
Caspame-7  Mch3, ICE-LAP3, MM OACRG  AD |5 +
Caspama-8  MAGCH FLICE, Mchs ACOG  VETD | S; LEMD | L ++ +
Caspame-3  ICE-LAPS, Mcaa ACGE DO | A 7
Caspama- 10 Mcad ACOG  S0TD W, IEAD LA +

Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326 ( Pt 1):1-16.
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Caspase substrate specificities®.

Specificity group P4-P1. Consensus
Optimal recognition
motif
Group | Caspase-1 WEHD
Caspase-4 WEHD WEHD
Caspase-d WEHD
Caspase-13 WEHD
Group Il Caspase-2 DEHD
Caspase-3 DEVD DEXD
Caspase-7 DEVD
Group Il Caspase-6 VEHD
Caspase-8 LETD (I/V/LJEXD
Caspase-9 LEHD
Caspase-10 LEXD

Grutter MG. Caspases: key players in programmed cell death. Curr Opin Struct Biol. 2000 Dec;10(6):649-55.
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Protein substrates of caspases

Asbreviation : SREBP, ssarol sequisiory slement binding protais,
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Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326 ( Pt 1):1-16.
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Extrinsic Pathway Intrinsic Pathway

Death Ligand Growth-factor deprivation,
DNA damage,
and other stress stimuli
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Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011 ;3(4):279-96.



Anti-apoptotic multidomain members

BCL-2, BCL-XL, MCL1
’ ) ’
BCLw AT BoL-s R el cH1 EEESS CH DI TV B

Pro-apoptotic multidomain members

BAX, BAK, BOK 4 BH1 EEEEEEEN pH; EEEEEEmNS TV B

BH3-only proteins

BID, BIM, BAD, BMF,
HRK, PUMA, NOXA, BIK

b -
BAX/
> DD

Anti-apoptotic BCL-2 proteins Pro-apoptotic BCL-2 proteins

CELL SURVIVAL / | APOPTOSIS

Subgroups of BCL-2 family members with representative members of each subfamily. (a) BCL-2 family members can be classified into

three subgroups according to function and BH domain composition. All BCL-2 family members possess at least one of four BCL-2 homology (BH)
domains, termed BH1, BH2, BH3, and BH4, and many also include a transmembrane (TM) domain. The anti-apoptotic multidomain members
have three to four BH domains, with some members lacking a BH4 domain. Similar to the anti-apoptotic multidomain members, the pro-apoptotic
multidomain members contain BH1, BH2, and BH3 domains. The BH3-only proteins are a subset of pro-apoptotic proteins that only bear a single
BH motif, the BH3 domain. Some BH3-only proteins also include a TM domain. (b) BCL-2 proteins play a key role in mediating the delicate
balance between cell survival and cell death. Disruption of this balance by cellular alterations that increase the functional activity of anti-apoptotic
BCL-2 proteins relative to pro-apoptotic BCL-2 proteins can enable the evasion of apoptosis, which tips the balance to favor cell survival and thus

promotes the development and progression of cancer. Gérard Lizard,

Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011 ;3(4):279-96.
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Domain organization and function of inhibitors of apoptosis (IAP) proteins. (a) XIAP, a well studied human IAP family member, and the

structurally similar family members clAP1 and clAP2 (clAPs) each have three tandem BIR domains followed by an ubiquitin-associated (UBA)

domain and a C-terminal RING finger domain. clAPs also possess a caspase recruitment domain (CARD) of unknown function located between

the UBA and the RING domains. (b) The BIR2 domain of XIAP, along with residues in its N-terminal flanking linker region, mediates the binding

and inhibition of caspase-3 and caspase-7. Inactivation of caspase-9 by XIAP involves the BIR3 domain of XIAP binding to caspase-9. In addition

to blocking caspase activity, XIAP can also promote cell survival through regulation of important cellular signaling pathways, including signaling

mechanisms of NF-kB activation. IAP-binding motif (IBM)-containing proteins, such as SMAC, interact with the BIR2 and BIR3 domains of

XIAP to neutralize its anti-apoptotic activity. Gérard Lizard,
Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011 ;3(4):279-96.



Inactive

DNase
CADI/ICAD Set Complex
}
Caspase 3 Granzyme A
Cleavage
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Sequence of activation of different nucleases in apoptosis. In regard to events occurring upstream of DNase activation during apoptosis, three systems have
been characterized to date. The first and most widely known is the activation of CAD by cleavage of its inhibitor ICAD by effector caspases like caspases 3

or 7. This mode of activation is found again during the activation of GAAD. Several proteins of the SET complex are cleaved by Granzyme A liberating an
active GAAD endonuclease. Finally a proteolytic cleavage of LEI, by the action of serine proteases, transforms this protein into L-DNase |I. It is interesting to
note that in every case the increase of the proteolytic activity in the cell triggers endonuclease activation. So, the activated DNase depends on the molecular
pathways activated upstream. Gérard Lizard,

Counis MF, Torriglia A. Acid DNases and their interest among apoptotic endonucleases. Biochimie. 2006 ; 88(12):1851-8.



Factor deprivation
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CAD

CAD-mediated apoptotic DNA fragmentation. When CAD is synthesized, ICAD helps
its correct and productive folding. CAD thus exists as an inactive enzyme complexed with
ICAD in proliferating cells. Various apoptotic signals such as death factors, factor-
deprivation, or genotoxic agents activate the caspase cascade. Caspase 3 downstream
of the cascade cleaves ICAD at two positions and inactivates its CAD-inhibitory activity.
CAD, thus released from ICAD, degrades chromosomal DNA.

Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 2000;256(1):12-8 Gérard Lizard,



Caspases

Apoptotic Non-Apoptotic
(Initiator caspases, (Selected substrate clevage,
Effector caspases) Compartmentalized activation
of caspases)
Immune function Proliferation Differentiation

Through conserved activation
mechanism of caspases and (T Iymphocytes,

production of IL. B-Iym phocytes)
(T-lymphocytes)

Incomplete apoptosis Non-apoptotic pheno-
Erythroblast, Osteoblast, type
Epithelial cells. Keratinocytes. Macrophages,
Lens epithelial and fiber cells. Skeletal muscles
Monocytes, Mcrophages.

Placental trophoblast,
Platelets formation, Placenta

formation, Neuronal
development

Chowdhury I, Tharakan B, Bhat GK. Caspases - an update. Comp Biochem Physiol B Biochem Mol Biol. 2008 ;151(1):10-27. Gérard Lizard,



Crosstalk between caspase activation, inflammation and ROS overproduction
The part taken by inflammasome

» Inflammatory ________ |ntracellular and

IL1B f L cytokines extracellular damage

'. S IL18

Pro-IL18

Pro-IL18
Pyroptosis

Inflammasome

Release of cell
contents

Initiators

ATP
| oxLDL
Dengue virus
Goat Crystal
Silica
| TXNIP (diabetes Type II)

General schema describing the process of activation of inflammasome: initiating factors activate production of reactive oxygen species (ROS)
which in turntriggers the inflammasome mediated inflammatory cascade. Oligomerization of components results in assembly of Inflammasome. This in
turn activates Il-1f and 1l-18 through caspase-1. NLRP3 Inflammasome promotes oxidative DNA damage. Inflammation and DNA damage culminates in
pyroptosis releasing contents from the damaged cell. This in turn promotes a vicious cycle of further Inflammasome mediated pathogenic process 18

Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352.



Mort cellulaire, inflammation et flux ioniques
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Lucia Celkova !, Sarah L. Dovle * and Matthew Camphell -*
J Clin. Med 2015, 4. 172-192; doi:10.3390/jcm4010172
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Ion channels in regulated cell death

Karl Kunzelmann®

Abstract Activation of ion channels and pores are
essential steps during regulated cell death. Channels and
pores participate in execution of apoptosis, necroptosis
and other forms of caspase-independent cell death.
Within the program of regulated cell death, these chan-
nels are strategically located. Ton channels can shrink
cells and drive them towards apoptosis, resulting in
silent, i.e. immunologically unrecognized cell death.
Altermatively, activation of channels can induce cell
swelling, disintegration of the cell membrane, and highly
immunogenic necrotic cell death. The underlying cell
death pathways are not strictly separated as identical
stimuli may induce cell shrinkage and apoptosis when
applied at low strength, but may also cause cell swelling
at pronounced stimulation, resulting in regulated necro-
sis. Nevertheless, the precise role of ion channels during
regulated cell death is far from being understood. as
identical channels may support regulated death in some
cell types, but may cause cell proliferation, cancer
development, and metastasis in others. Along this line,
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