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The European Network for Oxysterol Research (ENOR ; https://
www.oxysterols.net/) was created by Dr Gérard Lizard (Inserm / Uni-
versity of Burgundy, Dijon, France) and Prof Luigi Iuliano (Sapienza
University of Rome, Rome, Italy) after having gathered in 2010 in Mu-
nich a large number of European leaders involved in research on oxys-
terols and phytosterols during a joint meeting LipidomicNet and ENOR
(organizers: L Iuliano, M Lagarde, G Lizard, G Schmitz, M Wakelam).
Since then, and until 2019, an annual symposium has been organized
by ENOR in different European university cities gathering scientists
from different backgrounds and many students. Symposia have been
held successively in Rome - Italy (2011; local organizer: L Iuliano), Di-
jon - France (2012; local organizers: L Bretillon, G Lizard), Swansea -
UK (2013; local organizer: WJ Griffiths), Coimbra - Portugal (2014; lo-
cal organizer: ML Sá E Melo), Bonn - Germany (2015; local organizer: D
Lütjohann), Paris - France (2016; local organizer: C Massaad), Brussels -
Belgium (2017; local organizer: G Muccioli), Bologna - Italy (2018; lo-
cal organizers: MT Rodriguez Estrada and V Cardenia), Edinburgh -
Scotland (2019; local organizers: R Andrew, M Dixon and N Homer). In
2020, the ENOR meeting has been postponed due to the COVID-19 pan-
demic.

The aim of the ENOR is to promote interactions between research
groups, to enroll young investigators in the field, and to stimulate novel
researchs on oxysterols and phytosterols, on the identification of new
sterol metabolites or derivatives, on the characterization of the biologi-
cal, physiological, and patho-physiological properties of these mole-
cules, and on innovative therapies against oxysterol-associated diseases
[1,2]. ENOR is a self-promoting and self-sustaining organization, which
is opened to research groups worldwide. ENOR members exchange
ideas and share data during the annual meetings, and by conventional
internet-based tools. ENOR has about 100 members, from Australia,
Belgium, Brazil, Czech Republic, Finland, India, Ireland, Israel, Italy,
Japan, Finland, France, Germany, Lebanon, Lituania, Morocco, Nether-
lands, Poland, Portugal, Russia, Serbia, Slovenia, Spain, Switzerland,
Sweden, Tunisia, Turkey and United Kingdom. Scientists from USA also
regularly participate to the ENOR symposia.

Ten years after its creation, we can assume that ENOR has con-
tributed a lot to maintain, stimulate and promote research on oxysterols
and phytosterols, which are still little known molecules despite their
important physiological activities and their implications in many dis-
eases [3–5].

As a reminder, cholesterol (C27H46O ; molecular weight : 386.65 ;
chemical names : 3β-hydroxy-5-cholestene or 5-Cholesten-3β-ol; Pub-
Chem CID 5997), initially called “cholesterine”, was discovered in 1815
by the French chemist Eugène Chevreul, but it was only in 1884 that
Emile Littré introduced the term “cholestérol” in his medical dictionary
[6]. The name of cholesterol originates from the ancient Greek chole
(bile) and stereos (solid), because it has been initially discovered in its
solid form in galstones in 1758 by the French chemist François Poul-
letier de la Salle [6]. In the course of the 20th century, numerous stud-
ies on cholesterol have been carried out, leading to four Nobel prizes :
in 1928, Adolf Windaus for his research on sterols ; in 1964, Konrad
Bloch and Feodor Lynen for discovering the mechanism of cholesterol
and fatty acid metabolism ; in 1975, John Cornforth for his studies on
enzymes involved in cholesterol biosynthesis ; in 1985, Michael S
Brown and John L Goldstein for their works on cholesterol metabolism
and Low Density Liporotein (LDL) receptors [6]. These works have led
to a better understanding of cholesterol by elucidating its metabolism,
establishing the role of cholesterol in cardiovascular diseases [7], dis-
covering the lipoproteins that transport cholesterol and leading to cho-
lesterol-lowering drugs: the statins ; the first statin, compactin, was de-
scribed by Dr. A. Endo and colleagues (Sankyo Co, Japan) in the 1980s
[8,9]. Cholesterol, which is heterogeneously distributed, with only
0.5–1 % of total cell cholesterol present in the endoplasmic reticulum
and 60–80 % in the plasma membrane, is involved in cell signalling and
is a precursor of steroid hormones and bile acids [10]. Thus, if choles-
terol excesses are deleterious, cholesterol is a molecule essential to ani-
mal life.

It is also now well established that cholesterol can give rise to oxy-
genation products called oxysterols. These molecules were described by
Lifschutz in 1913, who called them oxycholesterols [6,11]. It was not
until the 1970 s–1980 s that AA Kandutsch and his colleagues called
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them oxysterols [12]. Since the 1970s, thanks to the initial research of
AA Kandutsch but also of B Craste de Paulet and their collaborators, the
works on oxysterols have continuously increased [12,13]. Oxysterols,
which are part of the oxygenation products of cholesterol, are a large
family of 27-carbon oxidized derivatives of cholesterol ; they are en-
dogenously produced by a variety of cells via enzymatic activities
(monooxygenases, oxidoreductases, hydrolases, transferases), auto-
oxidation (radical and non-radical processes), or both [14]. Several ma-
jor oxysterols also arise as intermediates in the pathways converting
cholesterol to bile acids or steroid hormones [2,11]. As a result of cho-
lesterol oxidation, polar groups (hydroxy, keto, hydroperoxy, epoxy, or
carboxyl) are introduced to the cholesterol molecule. Oxysterols poly-
oxygenated and conjugated can give rise to an expanding family of
structurally diversified steroids [15]. Oxysterols are involved in the
control of metabolism, proliferation, differentiation and cell death
[2,16]. Some of them are also involved in oxidative stress and inflam-
mation [4,17]. Therefore, these molecules display specific physiologi-
cal roles according to their chemical structure. Variation of the level of
some oxysterols has been linked to several diseases including age-
related diseases: cardiovascular diseases, eye diseases (age-related mac-
ular degeneration, cataract) neurodegenerative diseases (Alzheimer’s
disease, Huntington’s disease, Parkinson’s disease, multiple sclerosis,
amyotrophic lateral sclerosis), osteoporosis and cancers [3]. Some
oxysterols involved in these diseases have been characterized as spe-
cific ligands and modulators of nuclear or membranous receptors con-
trolling specific signalling pathways [18]. Indeed, the specific mecha-
nisms involved in oxysterols biosynthesis and metabolism, as well as
oxysterol - effectors constitute potential promising pharmacological
targets for several diseases. There is also recent evidence that several
oxysterols have antiviral activities against both enveloped and non-
enveloped viruses [19,20] and are involved in specific stages of covid-
19 infectivity [21].

In general, cholesterol and oxysterols can be considered as almost
specific molecules of animal cells since little cholesterol is present in
plant cells [22,23]. However, contrary to popular belief, the plants con-
tain cholesterol both free and esterified in low amount, and cholesterol
occurs as a component of plant membranes and as part of the surface
lipids of leaves where it is sometimes the major sterol [23]. Conse-
quently, cholesterol can be present in significant quantities in products
of vegetable origin such as oils (corn oil : 55 mg/kg ; Canola oil :
53 mg/kg ; cotton seed oil : 45 mg/kg) [23]. In olive oil, which is
widely used in the mediterranean diet, cholesterol is however present
at very low amount : 0.5–2 mg/kg [23,24]. On the other hand, all
plants synthesize and contain phytosterols which are plant sterols dis-
tinguishable from cholesterol by the presence of a methyl or ethyl
group on carbon 24 ; the most common phytosterols in the human diet
are β-sitosterol, campesterol and stigmasterol [25]. Phytosterols are
known to have several bioactive properties : they reduce intestinal cho-
lesterol absorption which alleviates blood LDL-cholesterol and several
data support that they can contribute to prevent cardiovascular prob-
lems whereas it is also well established that high phytosterols consump-
tion can favor sitosterolemia [26–28]. Case-control studies indicate that
high dietary intake phytosterol / phytostanol were associated with re-
duced risks of several cancers [29,30]. In addition, some phytosterol
oxidation products (oxyphytosterols) exhibit pro-atherogenic proper-
ties, cytotoxicity, oxidative stress, apoptosis, and proinflammatory
properties [28]. Thus, the pathohysiological impact of dietary phytos-
terols and their metabolites deserves further studies.

The numerous works on oxysterols and phytosterols underline the
dynamics of the research on these molecules. Beyond its scientific inter-
est and because of the numerous diseases among which oxysterols and
phytosterols can have deleterious or beneficial effects, the ENOR has an
international public health interest by gathering high level scientists
working in this field. Despite the COVID-19 pandemic, members of the
ENOR remained connected during the year 2020 and continued to work

together as evidenced by this special issue entitled 'ENOR : 10th an-
niversary'.

As activities of oxysterols on the immune system and viral infections
have been previously reported, several works have emerged showing
new activities of these molecules in this field [19,31]. The review by
Imen Ghzaiel et al. describes the effects of 7-ketocholesterol on viral in-
fections and its potential contribution in the pathophysiology of
COVID-19 [32]. The results of Lucio Boglione et al., from Dr Valerio
Leoni's group, show a marked reduction of 25-hydroxycholesterl (25-
OHC) and 27-hydroxycholesterol (27-OHC) plasma levels in all active
chronic hepatitis B (CHB) virus recruited patients, while the plasma val-
ues observed in inactive carriers remained within the physiological
range this study points to 27-OHC as a good candidate biomarker to dif-
ferentiate active and inactive CHB status [33]. Several works also un-
derline the importance of oxysterols on the metabolism and their impli-
cation in many diseases. J Abdel-Khalik from Swansea University (Prof
WJ Griffiths, Dr Y Wang) shows the production of bile acids from 7-
dehydrocholesterol in the plasma of patients with Smith-Lemli-Opitz
syndrome and describes that intermediates in the pathway, 25-
hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3β-
hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7β-
hydroxysterols are modulators of the activity of Smoothened (Smo), an
oncoprotein that mediates Hedgehog (Hh) signalling across membranes
during embryogenesis and in the regeneration of postembryonic tissue
[34]. T Jahn shows the importance of cerebrospinal fluid (CSF) levels of
several non-cholesterol sterols and oxysterols to Alzheimer’s disease
and core Alzheimer’s disease biomarkers. The plant sterols campesterol
and sitosterol appear to be involved in tau pathology and neurodegen-
eration. CSF desmosterol level indicates central nervous system choles-
terol synthesis and might be of relevance for clinical disease severity
[35]. Dr A Vejux reports that different lipids including fatty acids, fatty
acid peroxidation products, phospholipids as well as oxidized deriva-
tives of cholesterol (oxysterols) could constitute biomarkers providing
information on the form of multiple sclerosis, the outcome of the dis-
ease and the answer to treatment [36]. On another hand, the edible
Asian brown alga Sargassum fusiforme (Hijiki) contains high amounts
of oxysterols such as (3β, 24ξ) - stigmasta-5, 28-dien-3, 24-diol (24[R,
S] - saringosterol) that is a potent liver X receptor agonists. In his work,
K Vanbrabant describes the procurement, purification and stability of
24(R,S)-Saringosterol ; K Vanbrabant shows that brown algae Undaria
pinnatifida harvested in February and Sargassum muticum harvested in
October contained the highest amounts of 24(R, S)-saringosterol and its
precursor fucosterol, higher than Sargassum fusiforme, while Ascophyl-
lum nodosum and Fucus vesiculosus and Fucus serratus contained
amounts of 24(R, S)-saringosterol comparable to Sargassum fusiforme ;
the amount of 24(R, S)-saringosterol in the brown seaweeds can be
modulated by light [37]. Finally, the work of DJ Morris, team of Dr Alex
Odermatt, brings new information on the modulation of 11β-
hydroxysteroid dehydrogenase (11β-HSD1) functions by the cloud of
endogenous metabolites in a local microenvironment with potential
consequences on the treatment of hypertension [38].
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