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REGULATION OF LYSOSOMAL PERMEABILITY
AND ROLE OF LYSOSOMAL PROTEINS IN CELL DEATH
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CONNECTION BETWEEN LYSOSOME AND MITOCHONDRIA
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CONNECTION BETWEEN ENDOPLASMIC RETICULUM (ER) AND MITOCHONDRIA
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REDUNDANT PATHWAYS FROM DIFFERENT ORGANELLES TO APOPTOSIS AND NECROSIS
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Different pathways can co-exist in the same cell
and can be switched on by specific stimuli

Fiers W et al. Oncogene 1999, 18: 7719-7730.
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Domain Structures of RIP1 and RIP3 kinases
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* RIP1 and RIP3 interact via their
RIP1 m RIP homotypic interaction motif (RHIM) domains.

D328 * The two proteins share 33% similarity in the kinase
1 Kinase domain b RHIM 519 domain.

*Despite this similarity in the kinase domain,

Domain structures of RIP1 and RIP3, the two crucial kinases Nec—l (necrostatin-1) is specific to RIP1 and does not
for programmed necrosis. The kinase and RHIM domains of RIP1 and inhibit RIP3

RIP3 are required for death cytokine (TNF, FasL, and TRAIL)- o) @)
induced programmed necrosis. Evidence indicates that the kinase N/Me NH
activity of RIP1 is also required for assembly of an altemative /& /&
caspase-8 activating complex in response to apoptosis induced by N~ g N™ o
TNF and TAP antagonist [33]. In contrast, cleavage by caspase-8 at D H D H
D324 (for RIP1) [45] and D328 (for RIP3) [46] releases the kinase N N

domains from the RIP kinases and likely prevents the phosphorylation Cl H Cl H

and activation of downstream substrates. Polyubiquitination of RIP1 Nec-1 Nec-1i

at K377 inhibits TNF-induced apoptosis, possibly by blocking the

transition of the receptor-associated complex to the cytoplasmic death Nec-1i: inactive homologue of Nec-1

signaling complexes [41]. DD death domain

Going up in flames: necrotic cell injury and inflammatory diseases
Sreerupa Challa « Francis Ka-Ming Chan - Cell. Mol. Life Sci. (2010) 67:3241-3253
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SWITCHING FROM APOPTOSIS TO NECROPTOSIS
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Fig. 3 Regulation of programmed necrosis by ubiguitination, phos-
phorylation, and caspase cleavage. TNF-induced programmed
necrosis 1s regulated at multiple steps involving positive (indicated
by red arrows) and negative (indicated by black arrows) mechanisms.
TNF-R2 signaling enhances TNF-R1 mediated programmed necrosis
through a poorly defined mechanism [32, 43]. Upon binding to
TNE-R1, RIPI becomes modified by polyubiquitination at K377,
Polyubiguitinated RIP1 binds to NEMO, the regulatory subunit of
NF-xB, to promote NF-kB activation. NF-xB activation counters the
death signals by inducing pro-survival genes. The plasma membrane-

associated receptor signaling complex containing polyubiquitinated
RIP1 migrates to the cytoplasm where the receptor falls off the
complex and RIP1 becomes deubiquitinated. The deubiquitinating
enzymes A20 or CYLD may facilitate this reaction. In the presence of
caspase-8 inhibition, RIP1 and RIP3 interact with each other via the
RHIM to form the pro-necrotic signaling complex. This interaction is
further stabilized by phosphorylation of both kinases. However, active
caspase-8 cleaves RIP1 and possibly RIP3 to blunt the pro-necrotic
complex. The active caspase-8 complex can go onto cleave additional
substrates, culminating in cell death by apoptosis

Going up in flames: necrotic cell injury and inflammatory diseases
Sreerupa Challa « Francis Ka-Ming Chan - Cell. Mol. Life Sci. (2010) 67:3241-3253
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The signaling complexes are induced by TNFa to mediate NF-kB activation, apoptosis, and necroptosis. Stimulation of
TNFR1 by TNFa leads to the formation of an intracellular complex at the cytoplasmic membrane (complex I) that includes
TRADD, TRAF2, RIP1, and clAP1.

Ubiquitination of RIP1 at K377 by clAP1 leads to the recruitment of NEMO, a regulatory subunit of IKK complex that in turn
activates NF-kB pathway. RIP1 is also involved in the formation of complex lla including FADD and caspase-8 to activate a
caspase cascade to mediate apoptosis. Under apoptosis-deficient conditions or when cells are infected by certain viruses,
RIP1 interacts with RIP3 to form complex lib which is involved in mediating necroptosis. The formation complex Ilb requires
the kinase activity of RIP1 that is inhibited by Nec-1.

Necroptosis as an alternative form of programmed cell death. Christofferson DE & Yuan J.
Curr Opin Cell Biol 2010, 22: 263-268.
Functions of caspase 8: the identified and the mysterious. Salvesen GS, Walsh CM.

Semin Immunol. 2014:26:246-52. Gérard Lizard,



Ripoptosome : a IAP-regulated cell death-signalling platform
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Modified RIP1

\ O o2
- < paG> €

" eFLIP,

FADD: =

==
cFLIP,
Pro-Caspase-8 \l'
b~ S
cFLIP
Pro-Caspase-8
m X0
5 3
1

RIP1

FADD

00
» ==
L 8 -—?g
a

O

o

Y]

<

a

clAPs I
XIAP

Pro-Caspase-8

Ripoptosome L Limited activation Caspase-8 activation

y am ¢

Effector
Caspases

N

Necroptosis Apoptosis

Imre G, Larisch S, Rajalingam K. Ripoptosome: a novel IAP-regulated cell death-signalling
platform. J Mol Cell Biol. 2011;3(6):324-6. Gérard Lizard



RIP-1 RIP-1

—

Autophagy

ANTo‘ Cyclophilin D

\ |

Oxidative stress
Cell death?

Death receptor activated necroptosis

When caspase activity is blocked, death receptor activation can drive necroptosis through upregulation of PLA, activity that, in turn, increases
oxidative stress.

RIP-1 kinase is also activated triggering necroptosis by directly acting upon mitochondrial function or, perhaps, by effecting autophagy.

Caspase independent cell death: leaving the set without the final cut. Tait SWG and Green DR.
Oncogene 2008; 27: 6452-6461.
Gérard Lizard
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B Necrotic cell death is the result of interplay between several
signaling cascades. Kinase activity of RIPI is needed to induce
necrosis in several in vitro and in vivo models. The main players in
the propagation of necrosis are RIP3, calcium and mitochondria. RIP3
interacts with RIP1 and binds to several enzymes of the carbohydrate
and glutamine metabolism. Calcium controls activation of PLA.
calpains and NOS., which induce a series of events leading to necrotic
cell death. Mitochondria contribute to necrosis by excessive ROS
formation, mPT. and ATP depletion due to mitochondrial dysfunc-
tion. Several of these mediators are implicated in a self-amplifying
loop. See text for details

Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question
Franky Van Herreweghe « Nele Festjens *Wim Declercq * Peter Vandenabeele  Cell. Mol. Life Sci. (2010) 67:1567-1579
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Virus-induced necroptosis: VV infection enhances TNF-induced necroptosis, probably by endogenous TNF production. In contrast,
infection with MCMV rescues cells from TNF-induced necroptosis through M45-mediated inhibition of RIPK1-RIPK3 interaction. Infection

with a RHIM-mutated M45 or M45-deficient MCMV strain (MCMV*) induces RIPK1-independent, RIPK3- dependent necroptosis. HSV-1
infection induces necroptosis, which can be blocked by Nec-1 treatment

Gérard Lizard,
Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 2012;19(1):75-86.



Three types of autophagy:
-Macroautophagy
-Microautophagy
-Chaperone-mediated
autophagy
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Molecular Mecha

nisms of Autophagy
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